Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(10): e108745, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25299618

RESUMO

The evolution of sequestration (uptake and accumulation) relative to de novo biosynthesis of chemical defense compounds is poorly understood, as is the interplay between these two strategies. The Burnet moth Zygaena filipendulae (Lepidoptera) and its food-plant Lotus corniculatus (Fabaceae) poses an exemplary case study of these questions, as Z. filipendulae belongs to the only insect family known to both de novo biosynthesize and sequester the same defense compounds directly from its food-plant. Z. filipendulae and L. corniculatus both contain the two cyanogenic glucosides linamarin and lotaustralin, which are defense compounds that can be hydrolyzed to liberate toxic hydrogen cyanide. The overall amounts and ratios of linamarin and lotaustralin in Z. filipendulae are tightly regulated, and only to a low extent reflect the ratio in the ingested food-plant. We demonstrate that Z. filipendulae adjusts the de novo biosynthesis of CNglcs by regulation at both the transcriptional and protein level depending on food plant composition. Ultimately this ensures that the larva saves energy and nitrogen while maintaining an effective defense system to fend off predators. By using in situ PCR and immunolocalization, the biosynthetic pathway was resolved to the larval fat body and integument, which infers rapid replenishment of defense compounds following an encounter with a predator. Our study supports the hypothesis that de novo biosynthesis of CNglcs in Z. filipendulae preceded the ability to sequester, and facilitated a food-plant switch to cyanogenic plants, after which sequestration could evolve. Preservation of de novo biosynthesis allows fine-tuning of the amount and composition of CNglcs in Z. filipendulae.


Assuntos
Fabaceae/metabolismo , Fabaceae/fisiologia , Lepidópteros/metabolismo , Lepidópteros/fisiologia , Mariposas/metabolismo , Mariposas/fisiologia , Animais , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Larva/metabolismo , Larva/fisiologia , Lotus/metabolismo , Lotus/fisiologia , Nitrilas/metabolismo
2.
Insect Biochem Mol Biol ; 49: 80-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24727026

RESUMO

The six-spotted burnet moth Zygaena filipendulae (Lepidoptera) utilize the two cyanogenic glucosides (CNglcs) linamarin and lotaustralin as deterrents against predators throughout the entire life cycle. CNglcs can be hydrolyzed and bioactivated by ß-glucosidases, resulting in the release of toxic hydrogen cyanide. CNglcs are retained through metamorphosis, probably involved in mating communication, and transferred during mating from the male to the female as a nuptial gift. CNglcs can be biosynthesized de novo by Z. filipendulae larvae, but may also be sequestered from their food plant Lotus corniculatus (Fabaceae). These two strategies are tightly linked and adjusted according to the CNglc content and composition of the food plant in order to balance CNglc homeostasis in the larva. In this study, the amounts of CNglcs and transcript levels of the biosynthetic genes were monitored in all life-stages and tissues of Z. filipendulae. During pupation, transcription of the biosynthetic genes is turned off and the CNglc content slowly declines. In females but not males, transcription of the biosynthetic genes is re-activated at the end of pupation. Eggs and embryos do not biosynthesize CNglcs de novo, but are endowed with CNglcs following eclosion of the female. Similarly to larvae, de novo biosynthesis in female adults takes place in the integument from which CNglcs are then transported to other organs. This study demonstrates that Z. filipendulae has evolved the ability to adjust the production of CNglcs throughout its life-cycle for optimal utilization in defense and possibly other metabolic functions, while at the same time avoiding intoxication.


Assuntos
Glicosídeos/biossíntese , Proteínas de Insetos/genética , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Transcrição Gênica , Animais , Feminino , Regulação da Expressão Gênica , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Estágios do Ciclo de Vida , Masculino , Mariposas/genética
3.
Insect Biochem Mol Biol ; 44: 44-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269868

RESUMO

Considering the staggering diversity of bioactive natural products present in plants, insects are only able to sequester a small number of phytochemicals from their food plants. The mechanisms of how only some phytochemicals are sequestered and how the sequestration process takes place remains largely unknown. In this study the model system of Zygaena filipendulae (Lepidoptera) and their food plant Lotus corniculatus is used to advance the knowledge of insect sequestration. Z. filipendulae larvae are dependent on sequestration of the cyanogenic glucosides linamarin and lotaustralin from their food plant, and have a much lower fitness if reared on plants without these compounds. This study investigates the fate of the cyanogenic glucosides during ingestion, sequestration in the larvae, and in the course of insect ontogeny. To this purpose, double-labeled linamarin and lotaustralin were chemically synthesized carrying two stable isotopes, a (2)H labeled aglucone and a (13)C labeled glucose moiety. In addition, a small amount of (14)C was incorporated into the glucose residue. The isotope-labeled compounds were applied onto cyanogenic L. corniculatus leaves that were subsequently presented to the Z. filipendulae larvae. Following ingestion by the larvae, the destiny of the isotope labeled cyanogenic glucosides was monitored in different tissues of larvae and adults at selected time points, using radio-TLC and LC-MS analyses. It was shown that sequestered compounds are taken up intact, contrary to earlier hypotheses where it was suggested that the compounds would have to be hydrolyzed before transport across the gut. The uptake from the larval gut was highly stereo selective as the ß-glucosides were retained while the α-glucosides were excreted and recovered in the frass. Sequestered compounds were rapidly distributed into all analyzed tissues of the larval body, partly retained throughout metamorphosis and transferred into the adult insect where they were distributed to all tissues. During subsequent mating, isotope labeled cyanogenic glucosides were transferred from the male to the female in the nuptial gift.


Assuntos
Glicosídeos/metabolismo , Herbivoria/fisiologia , Mariposas/metabolismo , Nitrilas/metabolismo , Animais , Transporte Biológico , Glicosídeos/química , Cinética , Larva/química , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mariposas/química , Mariposas/crescimento & desenvolvimento , Nitrilas/química , Especificidade da Espécie
4.
Int J Mol Sci ; 14(5): 10242-97, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23681010

RESUMO

Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal.


Assuntos
Herbivoria/fisiologia , Insetos/fisiologia , Doenças das Plantas/parasitologia , Plantas/parasitologia , Animais , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita , Modelos Biológicos , Doenças das Plantas/genética , Plantas/genética , Plantas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...